Ultrasound assisted dispersal of a copper nanopowder for electroless copper activation.
نویسندگان
چکیده
This paper describes the ultrasound assisted dispersal of a low wt./vol.% copper nanopowder mixture and determines the optimum conditions for de-agglomeration. A commercially available powder was added to propan-2-ol and dispersed using a magnetic stirrer, a high frequency 850 kHz ultrasonic cell, a standard 40 kHz bath and a 20 kHz ultrasonic probe. The particle size of the powder was characterized using dynamic light scattering (DLS). Z-Average diameters (mean cluster size based on the intensity of scattered light) and intensity, volume and number size distributions were monitored as a function of time and energy input. Low frequency ultrasound was found to be more effective than high frequency ultrasound at de-agglomerating the powder and dispersion with a 20 kHz ultrasonic probe was found to be very effective at breaking apart large agglomerates containing weakly bound clusters of nanoparticles. In general, the breakage of nanoclusters was found to be a factor of ultrasonic intensity, the higher the intensity the greater the de-agglomeration and typically micron sized clusters were reduced to sub 100 nm particles in less than 30 min using optimum conditions. However, there came a point at which the forces generated by ultrasonic cavitation were either insufficient to overcome the cohesive bonds between smaller aggregates or at very high intensities decoupling between the tip and solution occurred. Absorption spectroscopy indicated a copper core structure with a thin oxide shell and the catalytic performance of this dispersion was demonstrated by drop coating onto substrates and subsequent electroless copper metallization. This relatively inexpensive catalytic suspension has the potential to replace precious metal based colloids used in electronics manufacturing.
منابع مشابه
Development of ultrasound-assisted emulsification microextraction for the determination of trace zinc and copper by flame atomic absorption spectrometry
In this work, we developed a method based on ultrasound-assisted emulsification microextraction (USAEME) for the determination of zinc and copper by flame atomic absorption spectrometry (FAAS). The method is based on the use of the organic solvent carbon tetrachloride (CCl4) as an extraction solvent. In order to obtain a high enrichment factor, the effect of different parameters affecting the c...
متن کاملA STUDY ON SINTERING BEHAVIORS OF COPPER COATED SIC COMPOSITE POWDERS FABRICATED BY ELECTROLESS PLATING AND MECHANICAL PROPERTIES OF THE CONSOLIDATED COMPOSITES
Copper coated SiC powders having three different amounts of copper, in the range of 20-60 wt%, were prepared via electroless coating process. The produced composite powders were uniaxially cold compressed and sintered at different temperatures and times under protective atmosphere. It was found that composite Cu/SiC powders and a relatively dense copper matrix composite with a uniform distribut...
متن کاملUltrasound-Assisted Pd Activation Process for Electroless Silver Plating
An ultrasound-assisted activation method for electroless silver plating is presented in this study. When the ultrasound was applied during the activation step, the amount of the Pd species adsorbed on substrate surfaces was higher than that of sample pretreated with a conventional activation process without ultrasound irradiation. With this activation method, it was also shown that the adsorbed...
متن کاملInkjet Catalyst Printing and Electroless Copper Deposition for Low-Cost Patterned Microwave Passive Devices on Paper
A scalable, low-cost process for fabricating copper-based microwave components on flexible, paper-based substrates is demonstrated. An inkjet printer is used to deposit a catalyst-bearing solution (tailored for such printing) in a desired pattern on commercially-available, recyclable, non-toxic (Teslin®) paper. The catalystbearing paper is then immersed in an aqueous copper-bearing solution to ...
متن کاملNickel Plated Copper Heat Spreader Surface Characteristics
Nickel plated copper heat spreader acts as a medium to dissipate heat from silicon die towards heat-sink. Electroless nickel plating requires catalytic activation before the nickel can be deposited onto copper. Different catalytic activation techniques such as galvanic initiation and thin nickel-copper electrodeposition have diverse impact on the thermal performance of the heat spreader. Surfac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ultrasonics sonochemistry
دوره 29 شماره
صفحات -
تاریخ انتشار 2016